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Abstract

We review more than 200 applications of neural networks in image processing and discuss the present and possible
future role of neural networks, especially feed-forward neural networks, Kohonen feature maps and Hop1eld neural
networks. The various applications are categorised into a novel two-dimensional taxonomy for image processing al-
gorithms. One dimension speci1es the type of task performed by the algorithm: preprocessing, data reduction=feature
extraction, segmentation, object recognition, image understanding and optimisation. The other dimension captures the
abstraction level of the input data processed by the algorithm: pixel-level, local feature-level, structure-level, object-level,
object-set-level and scene characterisation. Each of the six types of tasks poses speci1c constraints to a neural-based
approach. These speci1c conditions are discussed in detail. A synthesis is made of unresolved problems related to the
application of pattern recognition techniques in image processing and speci1cally to the application of neural networks.
Finally, we present an outlook into the future application of neural networks and relate them to novel developments.
? 2002 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Techniques from statistical pattern recognition
have, since the revival of neural networks, obtained a
widespread use in digital image processing. Initially,
pattern recognition problems were often solved by linear
and quadratic discriminants [1] or the (non-parametric)
k-nearest neighbour classi1er and the Parzen density
estimator [2,3]. In the mid-eighties, the PDP group [4]
together with others, introduced the back-propagation
learning algorithm for neural networks. This algorithm
for the 1rst time made it feasible to train a non-linear
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neural network equipped with layers of the so-called hid-
den nodes. Since then, neural networks with one or more
hidden layers can, in theory, be trained to perform virtu-
ally any regression or discrimination task. Moreover, no
assumptions are made as with respect to the type of un-
derlying (parametric) distribution of the input variables,
which may be nominal, ordinal, real or any combination
hereof.
In their 1993 review article on image segmentation,

Pal and Pal predicted that neural networks would become
widely applied in image processing [5]. This prediction
turned out to be right. In this review article, we survey
applications of neural networks developed to solve dif-
ferent problems in image processing (for a review of
neural networks used for 1D signal processing, see Ref.
[6]). There are two central questions which we will try
to answer in this review article:
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1. What are major applications of neural networks in
image processing now and in the nearby future?

2. Which are the major strengths and weaknesses of neu-
ral networks for solving image processing tasks?

To facilitate a systematic review of neural networks in
image processing, we propose a two-dimensional taxon-
omy for image processing techniques in Section 2. This
taxonomy establishes a framework in which the advan-
tages and unresolved problems can be structured in rela-
tion to the application of neural networks in image pro-
cessing (Section 3). Section 4 discusses some real-world
applications of neural networks in image processing. In
Section 5, identi1ed problems are considered and Section
6 presents an overview of future research issues which
need to be resolved or investigated further as to expedite
the application of neural networks in image processing.
A number of future trends are also brieGy sketched.
In the paper, we will not consider the basic theory of

neural networks. The reader is referred to standard text
books, e.g., Ref. [7].

2. Taxonomy for image processing algorithms

Traditional techniques from statistical pattern recog-
nition like the Bayesian discriminant and the Parzen
windows were popular until the beginning of the 1990s.
Since then, neural networks (ANNs) have increas-
ingly been used as an alternative to classic pattern
classi1ers and clustering techniques. Non-parametric
feed-forward ANNs quickly turned out to be attractive
trainable machines for feature-based segmentation and
object recognition. When no gold standard is available,
the self-organising feature map (SOM) is an interest-
ing alternative to supervised techniques. It may learn
to discriminate, e.g., diIerent textures when provided
with powerful features. The current use of ANNs in
image processing exceeds the aforementioned tradi-
tional applications. The role of feed-forward ANNs and
SOMs has been extended to encompass also low-level
image processing tasks such as noise suppression and
image enhancement. Hop1eld ANNs were introduced
as a tool for 1nding satisfactory solutions to complex
(NP-complete) optimisation problems. This makes them
an interesting alternative to traditional optimisation algo-
rithms for image processing tasks that can be formulated
as optimisation problems.
The diIerent problems addressed in the 1eld of digi-

tal image processing can be organised into what we have
chosen to call the image processing chain. We make the
following distinction between steps in the image process-
ing chain (see Fig. 1):

1. Preprocessing=1ltering. Operations that give as a
result a modi1ed image with the same dimensions as

the original image (e.g., contrast enhancement and
noise reduction).

2. Data reduction=feature extraction. Any operation that
extracts signi1cant components from an image (win-
dow). The number of extracted features is generally
smaller than the number of pixels in the input window.

3. Segmentation. Any operation that partitions an image
into regions that are coherent with respect to some
criterion. One example is the segregation of diIerent
textures.

4. Object detection and recognition. Determining the
position and, possibly, also the orientation and scale
of speci1c objects in an image, and classifying these
objects.

5. Image understanding. Obtaining high level (semantic)
knowledge of what an image shows.

6. Optimisation. Minimisation of a criterion function
which may be used for, e.g., graph matching or object
delineation.

Optimisation techniques are not seen as a separate step
in the image processing chain but as a set of auxiliary
techniques, which support the other steps.
Besides the actual task performed by an algorithm, its

processing capabilities are partly determined by the ab-
straction level of the input data. We distinguish between
the following abstraction levels:

A. Pixel level. The intensities of individual pixels are
provided as input to the algorithm.

B. Local feature level. A set of derived, pixel-based fea-
tures constitutes the input.

C. Structure (edge) level. The relative location of one or
more perceptual features (e.g., edges, corners, junc-
tions, surfaces, etc.).

D. Object level. Properties of individual objects.
E. Object set level. The mutual order and relative loca-

tion of detected objects.
F. Scene characterisation. A complete description of the

scene possibly including lighting conditions, context,
etc.

Table 1 contains the taxonomy of image processing
algorithms that results from combining the steps of the
image processing chain with the abstraction level of the
input data.

3. Neural networks in image processing

In this section, we will review neural networks trained
to perform one of the six tasks in the image processing
chain (3.1–3.6).

3.1. Preprocessing

The 1rst step in the image processing chain consists
of preprocessing. Loosely de1ned, by preprocessing we
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Preprocessing Data reduction Segmentation 
Object 

recognition 
       Image 
understanding 

Optimisation 

Noise suppression 
Deblurring 
Image enhancement 
Edge detection 

Compression 
Feature extraction 

Texture segregation 
Colour recognition 
Clustering 
 

Template matching 
Feature-based 
 recognition 

Scene analysis 
Object arrangement 

Graph matching 
Automatic thresholding 

Fig. 1. The image processing chain containing the 1ve diIerent tasks: preprocessing, data reduction, segmentation, object recognition
and image understanding. Optimisation techniques are used as a set of auxiliary tools that are available in all steps of the image
processing chain.

Table 1
The image processing tasks categorised into a two-dimensional taxonomya

Preprocessing Compression= Segmentation Recognition Image Optimisation
feature extract understanding

Pixel 26 25 39 51 3 5
Feature 4 2 19 38 2 3
Structure 2 6 5
Object 1
Object set 2 2
Scene

aEach cell contains the number of applications in our survey where neural networks accomplish a speci1c task in the image
processing chain.

mean any operation of which the input consists of sensor
data, and of which the output is a full image. Preprocess-
ing operations generally fall into one of three categories:
image reconstruction (to reconstruct an image from a
number of sensor measurements), image restoration (to
remove any aberrations introduced by the sensor, includ-
ing noise) and image enhancement (accentuation of cer-
tain desired features, which may facilitate later process-
ing steps such as segmentation or object recognition).
Applications of ANNs in these three preprocessing cat-

egories will be discussed separately below. The majority
of the ANNs were applied directly to pixel data (level
A); only four networks were applied to more high-level
data (features, level B).

3.1.1. Image reconstruction
Image reconstruction problems often require quite

complex computations and a unique approach is needed
for each application. In Ref. [8], an ADALINE network
is trained to perform an electrical impedance tomography
(EIT) reconstruction, i.e., a reconstruction of a 2D image

based on 1D measurements on the circumference of the
image. Srinivasan et al. [9] trained a modi1ed Hop1eld
network to perform the inverse Radon transform (e.g.,
for reconstruction of computerised tomography images).
The Hop1eld network contained “summation” layers to
avoid having to interconnect all units. Meyer and Heindl
[10] used regression feed-forward networks (that learn
the mapping E(y|x), with x the vector of input variables
and y the desired output vector) to reconstruct images
from electron holograms. Wang and Wahl trained a
Hop1eld ANN for reconstruction of 2D images from
pixel data obtained from projections [11].

3.1.2. Image restoration
The majority of applications of ANNs in preprocess-

ing can be found in image restoration [12–31]. In gen-
eral, one wants to restore an image that is distorted by
the (physical) measurement system. The system might
introduce noise, motion blur, out-of-focus blur, distortion
caused by low resolution, etc. Restoration can employ all
information about the nature of the distortions introduced
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by the system, e.g., the point spread function. The restora-
tion problem is ill-posed because conGicting criteria need
to be ful1lled: resolution versus smoothness.
The neural-network applications we reviewed had var-

ious designs ranging from relatively straightforward to
highly complex, modular approaches. In the most basic
image restoration approach, noise is removed from an
image by simple 1ltering. Greenhil and Davies [18] used
a regression feed-forward network in a convolution-like
way to suppress noise (with a 5 × 5 pixel window as
input and one output node). De Ridder et al. built a
modular feed-forward ANN approach that mimics the
behaviour of the Kuwahara 1lter, an edge-preserving
smoothing 1lter [16]. Their experiments showed that the
mean squared error used in ANN training may not be
representative of the problem at hand. Furthermore, un-
constrained feed-forward networks often ended up in a
linear approximation to the Kuwahara 1lter.
Chua and Yang [14,15] used cellular neural networks

(CNNs) for image processing. A CNN is a system in
which nodes are locally connected [23]. Each node con-
tains a feedback template and a control template, which to
a large extent determine the functionality of the network.
For noise suppression, the templates implement an aver-
aging function; for edge detection, a Laplacian operator.
The system operates locally, but multiple iterations allow
it to distribute global information throughout the nodes.
Although quite fast in application, a disadvantage is that
the parameters inGuencing the network behaviour (the
feedback and control templates) have to be set by hand.
Others have proposed methods for training CNNs, e.g.,
using gradient descent or genetic algorithms (grey-value
images, Zamparelli [30]). CNNs were also applied for
restoration of colour images by Lee and Degyvez [21].
Another interesting ANN architecture is the gener-

alised adaptive neural 1lter (GANF) [20,31] which has
been used for noise suppression. A GANF consists of a
set of neural operators, based on stack 1lters [12] that
uses binary decompositions of grey-value data. Finally,
fuzzy ANNs [27,28] and the neurochips described in Ref.
[22] have been applied to image restoration as well.
Traditional methods for more complex restoration

problems such as deblurring and diminishing out-of-
focus defects, are maximum a posteriori estimation
(MAP) and regularisation. Applying these techniques
entails solving high-dimensional convex optimisation
tasks. The objective functions of MAP estimation or
the regularisation problem can both be mapped onto the
energy function of the Hop1eld network [13,17,24,29].
Often, mapping the problem turned out to be diOcult,
so in some cases the network architecture had to be
modi1ed as well.
Other types of networks have also been applied to im-

age restoration. Qian et al. [26] developed a hybrid sys-
tem consisting of order statistic 1lters for noise removal
and a Hop1eld network for deblurring (by optimising a

criterion function). The modulation transfer function had
to be measured in advance. Guan et al. [19] developed
a so-called network-of-networks for image restoration.
Their system consists of loosely coupled modules, where
each module is a separate ANN. Phoha and Oldham [25]
proposed a layered, competitive network to reconstruct a
distorted image.

3.1.3. Image enhancement
The goal of image enhancement is to amplify speci1c

(perceptual) features. Among the applications where
ANNs have been developed for image enhancement
[32–42], one would expect most applications to be based
on regression ANNs [37,38,40,42]. However, several
enhancement approaches rely on a classi1er, typically
resulting in a binary output image [32,35,36,39].
The most well-known enhancement problem is edge

detection. A straightforward application of regression
feed-forward ANNs, trained to behave like edge detec-
tors, was reported by Pugmire et al. [38]. Chandresakaran
et al. [32] used a novel feed-forward architecture to clas-
sify an input window as containing an edge or not. The
weights of the network were set manually instead of be-
ing obtained from training. A number of more complex,
modular systems were also proposed [37,40]. Formulat-
ing edge detection as an optimisation problem made it
possible for Tsai et al. to train a Hop1eld network for
enhancement of endocardiac borders [41].
Some enhancement approaches utilise other types of

ANNs. Shih et al. [39] applied an ART network for
binary image enhancement. Moh and Shih [36] describe
a general approach for implementation of morpho-
logical image operations by a modi1ed feed-forward
ANN using shunting mechanisms, i.e., neurons acting
as switches. Waxman et al. [42] consider the applica-
tion of a centre-surround shunting feed-forward ANN
(proposed by Grossberg) for contrast enhancement and
colour night vision.

3.1.4. Applicability of neural networks in
preprocessing
There seem to be three types of problems in prepro-

cessing (unrelated to the three possible operation types)
to which ANNs can be applied:

• optimisation of an objective function de1ned by a
traditional preprocessing problem;

• approximation of a mathematical transformation used
for image reconstruction, e.g., by regression;

• mapping by an ANN trained to perform a certain task,
usually based directly on pixel data (neighbourhood
input, pixel output).

To solve the 1rst type of problems, traditional meth-
ods for optimisation of some objective function may
be replaced by a Hop1eld network. For a further
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discussion of the suitability of Hop1eld networks for
solving optimisation problems, see Section 3.6.
For the approximation task, regression (feed-forward)

ANNs could be applied. Although some applications such
ANNs were indeed successful, it would seem that these
applications call for more traditional mathematical tech-
niques, because a guaranteed (worst-case) performance
is crucial in preprocessing.
In several other applications, regression or classi1ca-

tion (mapping) networks were trained to perform image
restoration or enhancement directly from pixel data. A
remarkable 1nding was that non-adaptive ANNs (e.g.,
CNNs) were often used for preprocessing. Secondly,
when networks were adaptive, their architectures usu-
ally diIered much from those of the standard ANNs:
prior knowledge about the problem was used to design
the networks that were applied for image restoration or
enhancement (e.g., by using shunting mechanisms to
force a feed-forward ANN to make binary decisions).
The interest in non-adaptive ANNs indicates that the
fast, parallel operation and the ease with which ANNs
can be embedded in hardware may be important criteria
when choosing for a neural implementation of a speci1c
preprocessing operation. However, the ability to learn
from data is apparently of less importance in prepro-
cessing. While it is relatively easy to construct a linear
1lter with a certain, desired behaviour, e.g., by speci-
fying its frequency pro1le, it is much harder to obtain
a large enough data set to learn the optimal function
as a high-dimensional regression problem. This holds
especially when the desired network behaviour is only
critical for a small subset of all possible input patterns
(e.g., in edge detection). Moreover, it is not at all triv-
ial to choose a suitable error measure for supervised
training, as simply minimising the mean squared error
might give undesirable results in an image processing
setting.
An important caveat is that the network parame-

ters are likely to become tuned to one type of image
(e.g., a speci1c sensor, scene setting, scale, etc.), which
limits the applicability of the trained ANN. When
the underlying conditional probability distributions,
p(x|!j) or p(y|x), change, the classi1cation or regres-
sion network—like all statistical models—needs to be
retrained.

3.2. Data reduction and feature extraction

Two of the most important applications of data reduc-
tion are image compression and feature extraction. In
general, an image compression algorithm, used for stor-
ing and transmitting images, contains two steps: encod-
ing and decoding. For both these steps, ANNs have been
used. Feature extraction is used for subsequent segmen-
tation or object recognition. The kind of features one
wants to extract often correspond to particular geometric

or perceptual characteristics in an image (edges, corners
and junctions), or application dependent ones, e.g., facial
features.

3.2.1. Image compression applications
Two diIerent types of image compression approaches

can be identi1ed: direct pixel-based encoding=decoding
by one ANN [43–51] and pixel-based encoding=decoding
based on a modular approach [52–58]. DiIerent types of
ANNs have been trained to perform image compression:
feed-forward networks [44,49–54,56–58], SOMs [43,46
–48], adaptive fuzzy leader clustering (a fuzzy ART-like
approach) [55], a learning vector quanti1er [49,58] and a
radial basis function network [50]. For a more extensive
overview, see [45].
Auto-associator networks have been applied to image

compression where the input signal was obtained from a
convolution window [50,56,58]. These networks contain
at least one hidden layer, with less units than the input
and output layers. The network is then trained to recreate
the input data. Its bottle-neck architecture forces the net-
work to project the original data onto a lower dimensional
(possibly non-linear) manifold from which the original
data should be predicted.
Other approaches rely on a SOM, which after train-

ing acts as a code book [43,46]. The most advanced ap-
proaches are based on specialised compression modules.
These approaches either combine diIerent ANNs to ob-
tain the best possible image compression rate or they
combine more traditional statistical methods with one or
more ANNs. Dony and Haykin have developed an ap-
proach based on diIerent, specialised modules [53]. In
their approach, a “supervisor” ANN can choose which
processing module is best suited for the compression task
at hand. Wang et al. also present a modular coding ap-
proach based on specialised ANNs [57].
ANN approaches have to compete with well-established

compression techniques such as JPEG, which should
serve as a reference. The major advantage of ANNs
is that their parameters are adaptable, which may
give better compression rates when trained on spe-
ci1c image material. However, such a specialisation
becomes a drawback when novel types of images
have to be compressed. For a discussion of how
to evaluate image compression algorithms see, e.g.,
Ref. [52].

3.2.2. Feature extraction applications
Feature extraction can be seen as a special kind of

data reduction of which the goal is to 1nd a subset of
informative variables based on image data. Since image
data are by nature very high dimensional, feature extrac-
tion is often a necessary step for segmentation or object
recognition to be successful. Besides lowering the com-
putational cost, feature extraction is also a means for
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controlling the so-called curse of dimensionality. 1 When
used as input for a subsequent segmentation algorithm,
one wants to extract those features that preserve the class
separability well [2,3].
There is a wide class of ANNs that can be trained

to perform mappings to a lower-dimensional space, for
an extensive overview see Ref. [60]. A well-known
feature-extraction ANN is Oja’s neural implementa-
tion of a one-dimensional principal component analy-
sis (PCA) [61], later extended to multiple dimensions
[62]. In Ref. [63], Baldi and Hornik proved that train-
ing three-layer auto-associator networks corresponds
to applying PCA to the input data. Later [64,65],
auto-associator networks with 1ve layers were shown to
be able to perform non-linear dimensionality reduction
(i.e., 1nding principal surfaces [66]). It is also possible
to use a mixture of linear subspaces to approximate
a non-linear subspace (see, e.g., Ref. [67]). Another
approach to feature extraction is 1rst to cluster the
high-dimensional data, e.g., by a SOM, and then use the
cluster centres as prototypes for the entire cluster.
Among the ANNs that have been trained to per-

form feature extraction [68–77], feed-forward ANNs
have been used in most of the reviewed applications
[70,74,75,77]. SOMs [71–73] and Hop1eld ANNs [76]
have also been trained to perform feature extraction.
Most of the ANNs trained for feature extraction obtain
pixel data as input.
Neural-network feature extraction was performed for

• subsequent automatic target recognition in remote
sensing (accounting for orientation) [72] and charac-
ter recognition [75,76];

• subsequent segmentation of food images [74] and of
magnetic resonance (MR) images [71];

• 1nding the orientation of objects (coping with rota-
tion) [49,70];

• 1nding control points of deformable models [77];
• clustering low-level features found by the Gabor 1lters
in face recognition and wood defect detection [73];

• subsequent stereo matching [69];
• clustering the local content of an image before it is
encoded [68].

In most applications, the extracted features were used
for segmentation, image matching or object recognition.
For (anisotropic) objects occurring at the same scale, ro-
tation causes the largest amount of intra-class variation.

1 The curse of dimensionality is a property of a classi1cation
or regression problem. It expresses that a higher dimensionality
of the feature space leads to an increased number of parameters,
which need to be estimated. The risk of over1tting the model
will increase with the number of parameters, which will often
lead to peaking (i.e., the best generalisation performance is
obtained when using a subset of the available features) [59].

Some feature extraction approaches were designed to
cope explicitly with (changes in) orientation of objects.
It is important to make a distinction between applica-

tion of supervised and unsupervised ANNs for feature
extraction. For a supervised auto-associator ANN, the in-
formation loss implied by the data reduction can be mea-
sured directly on the predicted output variables, which
is not the case for unsupervised feature extraction by the
SOM. Both supervised and unsupervised ANN feature
extraction methods have advantages compared to tradi-
tional techniques such as PCA. Feed-forward ANNs with
several hidden layers can be trained to perform non-linear
feature extraction, but lack a formal, statistical basis (see
Section 5.3).

3.3. Image segmentation

Segmentation is the partitioning of an image into parts
that are coherent according to some criterion. When con-
sidered as a classi1cation task, the purpose of segmen-
tation is to assign labels to individual pixels or voxels.
Some neural-based approaches perform segmentation di-
rectly on the pixel data, obtained either from a convolu-
tion window (occasionally from more bands as present
in, e.g., remote sensing and MR images), or the informa-
tion is provided to a neural classi1er in the form of local
features.

3.3.1. Image segmentation based on pixel data
Many ANN approaches have been presented that seg-

ment images directly from pixel or voxel data [78–113].
Several diIerent types of ANNs have been trained to
perform pixel-based segmentation: feed-forward ANNs
[90,94,102,105,106], SOMs [78,82,84,87,91,92,94,98,
102,109], Hop1eld networks [83,85,96,103,110], prob-
abilistic ANNs [94,112], radial basis function networks
[94], CNNs [108], constraint satisfaction ANNs [79] and
RAM-networks [104]. A self-organising architecture
with fuzziness measures was used in Ref. [86]. Also, bi-
ologically inspired neural-network approaches have been
proposed: the perception model developed by Grossberg
[88,89], which is able to segment images from surfaces
and their shading, and the brain-like networks proposed
by Opara and Worgotter [99].
Hierarchical segmentation approaches have been de-

signed to combine ANNs on diIerent abstraction lev-
els [105,110]. The guiding principles behind hierarchical
approaches are specialisation and bottom–up process-
ing: one or more ANNs are dedicated to low level fea-
ture extraction=segmentation, and their results are com-
bined at a higher abstraction level where another (neural)
classi1er performs the 1nal image segmentation. Red-
dick et al. developed a pixel-based two-stage approach
where a SOM is trained to segment multispectral MR
images [102]. The segments are subsequently classi1ed
into white matter, grey matter, etc., by a feed-forward
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ANN. Non-hierarchical, modular approaches have also
been developed [78,105,107].
In general, pixel-based (often supervised) ANNs have

been trained to classify the image content based on

• texture [78,82,87,94,100,101,104,107,113];
• a combination of texture and local shape [81,90,95,
105,112].

ANNs have also been developed for pre- and postpro-
cessing steps in relation to segmentation, e.g., for

• delineation of contours [80,108];
• connecting edge pixels [103];
• identi1cation of surfaces [88,89];
• deciding whether a pixel occurs inside or outside a
segment [110];

• defuzzifying the segmented image [86];

and for

• clustering of pixels [98,109];
• motion segmentation [97].

In most applications, ANNs were trained as supervised
classi1ers to perform the desired segmentation.
One feature that most pixel-based segmentation ap-

proaches lack is a structured way of coping with vari-
ations in rotation and scale. This shortcoming may
deteriorate the segmentation result.

3.3.2. Image segmentation based on features
Several feature-based approaches apply ANNs for

segmentation of images [32,71,92,114–129]. DiIerent
types of ANNs have been trained to perform feature-based
image segmentation: feed-forward ANNs [71,114,118,
119,125], recursive networks [127], SOMs [71,92,119
–121,129], variants of radial basis function networks
[117] and CNNs [116], Hop1eld ANNs [126], principal
component networks [129] and a dynamic ANN [32].
Hierarchical network architectures have been devel-

oped for optical character recognition [122] and for seg-
mentation of range images [92].
Feature-based ANNs have been trained to segment

images based on the diIerences in

• texture [119,122–124,126–128];
• a combination of texture and local shape [118,121,125].

Besides direct classi1cation, ANNs have also been used
for

• estimation of ranges [92];
• automatic image thresholding by annealing [115] or
by mapping the histogram [114];

• estimation of the optical Gow [117];

• connecting edges and lines [116];
• region growing [120].

A segmentation task that is most frequently performed
by feature-based ANNs is texture segregation, which is
typically based on

• co-occurrence matrices [118,119,128];
• wavelet features [123];
• multiresolution features extracted from the Gabor
wavelets [126];

• spatial derivatives computed in the linear scale-space
[121].

The Gabor and wavelet-based features, and features
extracted from the linear scale-space provide informa-
tion at several scales to the classi1er, which, however,
needs to cope explicitly with variations in scale. As
with respect to orientation, the Gabor and wavelet-based
approaches are, in general, sensitive to horizontal, verti-
cal and diagonal features. These three directions can be
combined into a local orientation measure such that rota-
tion invariance is obtained. The scale-space features can
be reduced to a few invariants that are indeed rotation
invariant [130]. The generalised co-occurrence matrices
cope with variations in orientation by averaging over
four orthogonal orientations. Scale can also be taken
into account by varying the distance parameter used to
compute the co-occurrence matrix.

3.3.3. Open issues in segmentation by ANNs
Three central problems in image segmentation by

ANNs are: how to incorporate context information, the
inclusion of (global) prior knowledge, and the evalua-
tion of segmentation approaches. In the approaches we
reviewed, context information was obtained from, e.g.,
multiscale wavelet features or from features derived
from the linear scale space (computed at a coarse scale).
How context information can best be incorporated, is
an interesting issue for further research. The general
problem of how to include a priori knowledge in a
segmentation approach is considered in Section 5.2.
A caveat is how to obtain a gold standard for the (in

most cases supervised) segmentation algorithms. In gen-
eral, the true class membership of the pixels=voxels in
the training set is known with varying degrees of con-
1dence. In Ref. [119], this problem is addressed by let-
ting an expert demarcate the inner parts of areas with a
similar (coherent) texture but leaving the transition areas
unclassi1ed. Certainly, intra- and inter-observer variabil-
ity needs to be assessed thoroughly (e.g., by the kappa
statistic [131]) before suitable training and test images
can be compiled.
Even when a reliable gold standard is available, ob-

jective performance assessment entails more than simply
computing error rates on novel test images. There is not
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yet a single measure capable of unequivocally quantify-
ing segmentation quality. Besides statistical performance
aspects such as coverage, bias and dispersion [131],
desirable properties such as within-region homogeneity
and between-region heterogeneity [132] are also impor-
tant (for an overview of segmentation quality measures
see Ref. [133]).

3.4. Object recognition

Object recognition consists of locating the positions
and possibly orientations and scales of instances of ob-
jects in an image. The purpose may also be to assign a
class label to a detected object. Our survey of the lit-
erature on object recognition using ANNs indicates that
in most applications, ANNs have been trained to locate
individual objects based directly on pixel data. Another
less frequently used approach is to map the contents of
a window onto a feature space that is provided as input
to a neural classi1er.

3.4.1. Object recognition based on pixel data
Among the ANN approaches developed for pixel-based

object recognition [39,42,67,70,72,134–179], several
types of ANNs can be distinguished: feed-forward-like
ANNs [70,147–149,152,164,165,171,172], variants us-
ing weight sharing [144,159,160], recurrent networks
[179], the ART networks introduced by Grossberg
[39,139], mixtures-of-experts [173], (evolutionary)
fuzzy ANNs [155], bi-directional auto-associative mem-
ories [157], the Neocognitron introduced by Fukushima
[150,162] and variants hereof [137,161], piecewise-linear
neural classi1ers [168], higher-order ANNs [169,170]
and Hop1eld ANNs [135,175,176]. Besides, interesting
hardware ANNs have been built for object recognition:
the RAM network [143,145] and optical implementa-
tions [154,167]. Finally, SOMs are occasionally used for
feature extraction from pixel data [171,177]; the output
of the map is then propagated to a (neural) classi1er.
Several novel network architectures have been de-

veloped speci1cally to cope with concomitant object
variations in position, (in-plane or out-of-plane) ro-
tation and scale (in one case, an approach has been
developed that is invariant to changes in illumina-
tion [167]). It is clear that a distinction needs to be
made between invariant recognition in 2D (projection
or perspective) images and in 3D volume images. An
interesting approach that performs object recognition,
which is invariant to 2D translations, in-plane rotation
and scale, is the neurally inspired what-and-where 1l-
ter [139]. It combines a multiscale oriented 1lter bank
(what) with an invariant matching module (where).
Other approaches rely on learning the variations explic-
itly by training [141,147,148,164]. Egmont-Petersen and
Arts built a statistical intensity model of the object that
should be detected [147,148]. The convolution ANN

was trained using synthetic images of the (modelled)
object with randomly chosen orientations. Penedo et al.
developed a two-stage ANN approach for recognition
of nodules in chest radiographs [164]. These ANNs
were trained partly with synthetic subimages of nodules.
Others have developed approaches that are invariant to
both translation and 2D rotation [144,178], or systems
that through their architectures perform processing in a
translation-invariant way and=or at diIerent scales (e.g.,
the Neocognitron [150] and the shared weight networks
[158,159]). Fukumi et al. developed a hierarchical ap-
proach for rotation-invariant object recognition [70]. This
approach, like its predecessor [149], maps the image to a
polar space in which rotation-invariant recognition takes
place.
Clearly, when object recognition is performed by

teaching a classi1er to recognise the whole object from
a spatial pattern of pixel intensities, the complexity of
the classi1er grows exponentially with the size of the
object and with the number of dimensions (2D versus
3D). An interesting approach that circumvents this prob-
lem is iterative search through the image for the object
centre [143]. The output of the ANN is the estimated
displacement vector to the object centre. Depending
on the contents of the scene, even context information
may be required before the objects of interest can be
recognised with con1dence. The incorporation of con-
text information may again lead to a large number of
extra parameters and thereby a more complex classi1er.
To cope with this problem the so-called multiresolution
approaches have been developed [171,175,176], which
combine the intensities from pixels located on diIerent
levels of a pyramid [180] but centred around the same
location. This provides the classi1er with context in-
formation, but a combinatorial explosion in the number
of parameters is circumvented. Still, variations in scale
have to be learned explicitly by the classi1er. A disad-
vantage of ANN pyramid approaches is that they sample
the scale space coarsely as the resolution is reduced with
a factor two at each level in the pyramid (in, e.g., the
linear scale space [181], scale is a continuous variable).
A special type of ANN that incorporates the scale in-
formation directly in a pyramidal form is the so-called
higher-order ANN [169,170]. This network builds up an
internal scale-space-like representation by what is called
coarse coding. However, higher-order ANNs need to
learn variations in scale explicitly too. They should be
used with caution because the coarse coding scheme
may lead to aliasing, as the high-resolution images are
not blurred before computing the coarser image at the
next level.
Rare conditions such as object occlusion or the oc-

currence of multiple objects within the (sub)image that
is processed by the classi1er have hardly been consid-
ered explicitly. An experimental architecture developed
by McQuiod is capable of recognising multiple objects
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simultaneously within an image [161] (see also Section
3.6).
Recurrent ANNs (with feed-back loops [182]) can be

used to develop special approaches for object recogni-
tion [179]. The added value of a recurrent network ar-
chitecture lies in its memory: the current state contains
information about the past, which may constitute valu-
able context information. The recurrent network devel-
oped by Ziemke [179] performs a convolution with an
image in order to detect oil spills. The recurrence princi-
ple introduces averaging, which can give a more robust
performance.
Several of the approaches for object detection and clas-

si1cation operate on binary images [137,139,143–145].
Although binarisation simpli1es the recognition problem
considerably, it generally decreases the recognition per-
formance of an ANN.

3.4.2. Object recognition based on features
Several neural-network approaches have been devel-

oped for feature-based object recognition [152,164,171,
177,183–209] including: feed-forward ANNs [152,171,
177,184–187,190,193–197,200,205,207–209], Hop1eld
ANNs [201], a fuzzy ANN [186] and RAM ANNs
[192,202]. SOMs are occasionally used to perform fea-
ture extraction prior to object recognition [177,197],
although SOMs have also been trained to perform object
classi1cation [206].
The smaller variety of neural architectures devel-

oped for feature-based object recognition compared to
the pixel-based approaches discussed in the previous
section, reGects the fact that most eIort is focused on
developing and choosing the best features for the recog-
nition task. Common for many feature-based approaches
is that variations in rotation and scale are coped with by
the features, e.g., statistical moments. A certain amount
of noise will inGuence the computed features and dete-
riorate the recognition performance [203]. So the major
task of the subsequent classi1er is to 1lter out noise and
distortions propagated by the features. Moreover, when
the object to be detected is large and needs to be sam-
pled densely, feature extraction is inevitable. Otherwise,
a neural classi1er will contain so many parameters that
a good generalisation will be impeded.
In general, the types of features that are used for

object recognition diIer from the features used by the
neural-based segmentation approaches already reviewed.
For object recognition, the features typically capture
local geometric properties:

• points with a high curvature on the detected object
contours [164,208];

• (Gabor) 1lter banks [201,207] including wavelets
[191];

• dedicated features: stellate features [194] and OCR
features [190];

• projection of the (sub)image onto the x- and y-axis
[184];

• principal components obtained from the image
[204,205] (feature extraction);

• (distances to) feature space trajectories [210], which
describe objects in all rotations, translations or scales
[187];

• The Fourier descriptors derived from the image [209];
• The Zernike moments [195] and the moments of Hu
[203].

The Fourier descriptors, the Zernike moments and the
moments of Hu are invariant to changes in object posi-
tion, orientation and scale [203,211]. For a discussion of
moments and invariance to grey-level transformations,
see Ref. [211].
Multiresolution approaches have also been developed

for object recognition based on features from

• the linear scale-space [185,193];
• the Gauss pyramid [171];
• the Laplace pyramid [205].

Also, the positions of detected edges (input level C)
may serve as features for a classi1er [171]. Finally, a
set of features has been developed that is invariant to
changes in colour [192].
Which set of features is best suited for a particular

recognition task, depends on the variations among the
objects (and of the background) with respect to position,
(in-plane) orientation and scale. Knowledge of the de-
grees of freedom the approach has to cope with is needed
for choosing a suited set of features (feature selection is
discussed in Section 5.1).

3.4.3. Using pixels or features as input?
Most ANNs that have been trained to perform image

segmentation or object recognition obtain as input either
pixel=voxel data (input level A) or a vector consisting
of local, derived features (input level B). For pixel- and
voxel-based approaches, all information (within a win-
dow) is provided directly to the classi1er. The perfect
(minimal error-rate) classi1er should, when based di-
rectly on pixel data, be able to produce the best result if
the size of the window is comparable to that of the texture
elements (texels) or the window encompasses the object
and the (discriminative) surrounding background. When,
on the other hand, the input to the classi1er consists of a
feature vector, the image content is always compressed.
Whether suOcient discriminative information is retained
in the feature vector, can only be resolved experimen-
tally.
Two-dimensional image modalities such as radiogra-

phy, 2D ultrasound and remote sensing often exhibit
concomitant variations in rotation and scale. If such in-
variances are not built into a pixel-based ANN, careful
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calibration (estimation of the physical size of a pixel) and
subsequent rescaling of the image to a standard resolu-
tion are required steps to ensure a con1dent result. When
only rotations occur, features obtained from a polar map-
ping of the window may ensure a good segmentation or
detection result [70,149].
In many applications, however, calibration is unfea-

sible and 2D=3D rotation and scale invariance needs
to be incorporated into the ANN. For pixel-based ap-
proaches, invariance can be either built directly into the
neural classi1er (e.g., using weight sharing [159] or by
taking symmetries into account [212]), or the classi1er
has to be trained explicitly to cope with the variation
by including training images in all relevant orientations
and scales. A major disadvantage of these approaches
is that object variations in rotation and scale have to be
learned explicitly by the classi1er (translation can usu-
ally be coped with by convolution). This again calls for
a very large, complete training set and a classi1er that
can generalise well. Model-based approaches have been
presented that can generate such a complete training set
[147,148,164,185], see the discussion above. How to de-
sign robust pixel-based algorithms for segmentation and
object recognition that can cope with the three basic aOne
transforms, is a challenging subject for future research.
In situations where many concomitant degrees of

freedom occur (2D or 3D rotation, scale, aOne grey-
level transformations, changes in colour, etc.), only
feature-based approaches may guarantee that the re-
quired invariance is fully obtained. It is clear that when
variations in orientation and scale occur and reliable
calibration is unfeasible, an ANN based on invariant fea-
tures should be preferred above a pixel-based approach.
Another advantage of feature-based approaches is that
variations in rotation and scale may remain unnoticed by
the user, who may then end up with a poor result. When
there is no limited set of images on which an algorithm
has to work (e.g., image database retrieval), the more
Gexible pixel-based methods can prove useful.
The recommendation to prefer feature-based over

pixel=voxel-based image processing (when signi1cant
variations in rotation and scale actually occur in the
image material), puts emphasis on the art of develop-
ing and choosing features which, in concert, contain
much discriminative power in relation to the particular
image processing task. Prior knowledge regarding the
image processing task (e.g., invariance) should guide
the development and selection of discriminative fea-
tures. Feature-based classi1ers will, in general, be easier
to train when the chosen features cope adequately with
the degrees of freedom intrinsic to the image material
at hand. The removal of superGuous features is often
necessary to avoid the peaking phenomenon [59] and
guarantee a good generalisation ability of the classi1er.
This issue, which is a general problem in statistical
pattern recognition, is discussed in Section 5.1.

3.5. Image understanding

Image understanding is a complicated area in image
processing. It couples techniques from segmentation or
object recognition with knowledge of the expected image
content. In two applications, ANNs were used in com-
bination with background knowledge to classify objects
such as chromosomes from extracted structures (input
level C) [213] and to classify ships, which were recog-
nised from pixel data (input level A) by an advanced
modular approach [214]. In another application, ANNs
were used to analyse camera images for robot control
from local features (input level B) [215]. Neural (deci-
sion) trees [216], semantic models based on extracted
structures (input level C) [217] or neural belief networks
[218] can be used to represent knowledge about the ex-
pected image content. This knowledge is then used to
restrict the number of possible interpretations of single
objects as well as to recognise diIerent con1gurations of
image objects. Especially, the approaches by Reinus et
al. [217] and Stassopoulou et al. [218] perform genuine
image interpretation. Reinus trains an ANN to diagnose
bone tumours. The recognition approach of Stassopoulou
et al. predicts the degree of deserti1cation of an area from
a set of detected objects=segments, such as rocks, eroded
areas, etc., in remote sensing images (input level E).
A major problem when applying ANNs for high level

image understanding is their black-box character. It is
virtually impossible to explain why a particular image
interpretation is the most likely one. As a remedy, Stas-
sopoulou et al. mapped the trained ANN onto a Bayesian
belief network after training had been performed. An al-
ternative approach to coping with the black-box prob-
lem is to use the generic explanation facility developed
for ANNs [219] or to use rule extraction [220]. Another
problem in image understanding relates to the level of the
input data. When, e.g., seldom occurring features (input
level C) or object positions (input level E) are provided
as input to a neural classi1er, a large number of images
are required to establish statistically representative train-
ing and test sets. We feel that image understanding is the
most dubious application of ANNs in the image process-
ing chain.

3.6. Optimisation

Some image processing (sub)tasks such as graph-
and stereo-matching can best be formulated as opti-
misation problems, which may be solved by Hop1eld
ANNs [11,76,103,221–230]. In some applications, the
Hop1eld network obtained pixel-based input (input level
A) [11,76,103,226,230], in other applications the input
consisted of local features (input level B) [224,228]
or detected structures (typically edges, input level C)
[222,223,225,227,229].



M. Egmont-Petersen et al. / Pattern Recognition 35 (2002) 2279–2301 2289

Hop1eld ANNs have been applied to the following
optimisation problems:

• segmentation of an image with an intensity gradient
by connecting edge pixels [103,226] (input level A);

• thresholding images by relaxation [230] (input level
A);

• two-dimensional [76,227,229] and three-dimensional
object recognition by (partial) graph matching
[222,228] (input level C);

• establishing correspondence between stereo images
based on features (landmarks) [224] and stereo corre-
spondence between line cameras from detected edges
[225];

• approximation of a polygon from detected edge points
[223];

• controlling Voronoi pyramids [221].

Hop1eld ANNs have mainly been applied to seg-
mentation and recognition tasks that are too diOcult to
realise with conventional neural classi1ers because the
solutions entail partial graph matching or recognition
of three-dimensional objects. Matching and recognition
are both solved by letting the network converge to a
stable state while minimising the energy function. It was
also shown that iterating the Hop1eld network can be
interpreted as a form of probabilistic relaxation [231].
In most of the applications reviewed, casting the ac-

tual problem to the architecture of the Hop1eld network
turned out to be diOcult. Occasionally, the original
problem had to be modi1ed before it could be solved by
the Hop1eld architecture. Also, convergence to a global
optimum cannot be guaranteed. Finally, for Hop1eld
networks training and use both require complex com-
putation, but this also holds for other more traditional
algorithms for non-linear programming [232]. It should
be kept in mind that some (constrained) non-linear pro-
gramming problems can be solved optimally by tradi-
tional algorithmic approaches. The Hop1eld network is
really only an interesting approach for problems that lie
beyond this subclass of solvable optimisation problems.

4. Real-world applications of neural networks

This review has concentrated on applications of ANNs
to image processing problems, which were reported in
the scienti1c literature. However, as the 1eld matured,
ANNs have gradually found their way into a large range
of (commercial) applications. Unfortunately, commer-
cial and other considerations often impede publication of
scienti1c and technical aspects of such systems. In some
research programmes, an overview of commercial appli-
cations of ANNs has been given, e.g., the SIENA project
(ESPRIT project 9811) [233], the NeuroNet project [234]
and the British NCTT project [235]. The project web sites

list a number of application areas in which ANN-based
systems are often encountered:

• industrial inspection: quality and process control, e.g.,
the detection of defect objects in the production of
steel, textiles, fruit, vegetables, plants or other food
products;

• document processing: computerised reading of
machine-generated and hand-written text used for,
e.g., automatic processing of forms and mail sorting;

• identi1cation and authentication: e.g., license
plate recognition, 1ngerprint analysis and face
detection=veri1cation [236];

• medical diagnosis: e.g., screening for cervical cancer
[237] or breast tumours [238,239];

• defence: various navigation and guidance systems, tar-
get recognition systems, etc. [240,241].

More information on the aforementioned applications can
be found via the internet [233–235].

5. Discussion

Two major advantages of ANNs is that they are appli-
cable to a wide variety of problems and are relatively easy
to use. There are, however, still caveats and fundamental
problems that need to be investigated in the future. Some
of these issues are general in the sense that they are not
resolved by other, competing techniques from the pat-
tern recognition 1eld. Other problems are caused by the
strive to solve an image processing problem by means of
a statistical, data-oriented technique. Finally, some prob-
lems are fundamental to the way ANNs approach pattern
recognition problems.

5.1. Issues in pattern recognition

When trying to solve a recognition problem, one may
be faced with several problems that are fundamental to
applied statistical pattern recognition: avoiding the curse
of dimensionality, selecting the best features and achiev-
ing a good transferability.
The 1rst problem, the curse of dimensionality, occurs

when too many input variables are provided to a classi-
1er or regression function. The risk of ending up with
a classi1er or regressor that generalises poorly on novel
data, increases with the number of dimensions of the
input space. The problem is caused by the inability of
existing classi1ers to cope adequately with a large num-
ber of (possibly irrelevant) parameters, a de1ciency that
makes feature extraction and=or feature selection neces-
sary steps in classi1er development. Feature extraction
has been discussed in detail in Section 3.2.2. Feature se-
lection is by virtue of its dependence on a trained clas-
si1er, an ill-posed problem [242–244]. Besides oIering
a way to control the curse of dimensionality, feature
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selection also provides insight into the properties of a
classi1er and the underlying classi1cation problem [242].
A problem that is especially important in applications

such as medical image processing, is how to ensure the
transferability of a classi1er. When trained to classify
patterns obtained from one setting with a speci1c class
distribution, P(!j), a classi1er will have a poorer and
possibly unacceptably low performance when transferred
to a novel setting with another class distribution P′(!j).
How to cope with varying prior class distributions, is a
subject for future research. Another problem related to
transferability is how to account for changing underlying
feature distributions, p(x|!j) or p(y|x). In general, the
parameters of the classi1er or regression function need to
be reestimated from a data set that is representative for the
novel distribution. This problem is intrinsic to all statisti-
cal models as they are based on inductive inference. Note
that for a classi1er that has been trained, e.g., to recognise
objects appearing at a certain scale directly from pixel
data, recognition of similar objects at a diIerent scale is
equivalent to classifying patterns from a novel distribu-
tion p′(x|!j). Classi1ers or regression models that have
not been retrained, should catch patterns occurring out-
side the space spanned by the training cases and leave
these patterns unprocessed, thereby avoiding the assign-
ment of “wild-guess” class labels (see, e.g., Ref. [245])
or unreliable prediction of the conditional mean (in re-
gression). Moreover, the question of how to incorporate
costs of diIerent misclassi1cations (again, an important
topic in, e.g., medical image processing) or the compu-
tational costs of features [246], is not yet fully answered.

5.2. Obstacles for pattern recognition in image
processing

Besides fundamental problems within the 1eld of
pattern recognition, other problems arise because sta-
tistical techniques are used on image data. First, most
pixel-based techniques consider each pixel as a separate
random variable. A related problem is how one should
incorporate prior knowledge into pattern recognition
techniques. Also, the evaluation of image processing
approaches is not always straightforward.
A challenging problem in the application of pattern

recognition techniques on images is how to incorpo-
rate context information and prior knowledge about the
expected image content. This can be knowledge about
the typical shape of objects one wants to detect, knowl-
edge of the spatial arrangement of textures or objects,
or prior knowledge of a good approximate solution to
an optimisation problem. According to Perlovsky [247],
the key to restraining the highly Gexible learning algo-
rithms for ANNs, lies in the very combination with prior
(geometric) knowledge. However, most pattern recogni-
tion methods do not even use the prior information that
neighbouring pixel=voxel values are highly correlated.

This problem can be circumvented by extracting features
from images 1rst, by using distance or error measures
on pixel data which do take spatial coherency into ac-
count (e.g., Refs. [67,248]), or by designing an ANN
with spatial coherency (e.g., Ref. [159]) or contextual
relations between objects (e.g., Ref. [249]) in mind.
Context information can also be obtained from the pyra-
mid and scale space approaches discussed in Section
3.4.1. In the reviewed applications, prior knowledge was
mainly used to identify local features (input level B) that
were used as input to neural classi1ers. Fuzzy ANNs
may play a special role because they can be initialised
with (fuzzy) rules elicited from domain experts. Using
prior knowledge to constrain the highly parameterised
(neural) classi1ers, is a scienti1c challenge.
There is a clear need for a thorough validation of the

developed image processing algorithms. In the reviewed
literature, validation on a large set of test images had
only occasionally been performed. Validation and com-
parison of diIerent algorithms are only possible when a
reliable gold standard exists and meaningful (objective)
quality measures are available. For, e.g., object recogni-
tion, a gold standard is in most cases easy to obtain. In
other applications, diIerent (human) observers may not
fully agree about the gold standard (e.g., segmentation
of medical images). Even with a reliable gold standard
being available, it is clear that performance assessment
entails much more than simply computing error rates on
novel test images.
Finally, in image processing, classi1cation and regres-

sion problems quickly involve a very large number of
input dimensions, especially when the algorithms are ap-
plied directly to pixel data. This is problematic, due to
the curse of dimensionality already discussed. However,
the most interesting future applications promise to de-
liver even more input. Whereas, in almost all reviewed
articles, ANNs were applied to two-dimensional images,
e.g., (confocal) microscopy and CT=MR (medical) imag-
ing are three-dimensional modalities. One way to cope
with this increased dimensionality is by feature-based
pattern recognition, another way would be to develop an
architecture that inherently downsamples the original im-
age. As already mentioned, the search for the optimal set
of features that in concert gives the best class separabil-
ity is a never-ending quest. To avoid such a quest for all
kinds of features that capture certain speci1c aspects in a
(sub)image, a general mapping (invariant to changes in
position, rotation and scale) of a (sub)image to a mani-
fold subspace should be developed. This will change the
focus from selection of individual features to optimisa-
tion of the sampling density in the invariant space.

5.3. Neural network issues

A number of unresolved problems exist in the
1eld of ANNs. We will in turn consider the lack of
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a profound theoretical basis for ANNs, the problem
of choosing the best architecture and the black-box
problem.
Several theoretical results regarding the approxima-

tion capabilities of ANNs have been proven. Although
feed-forward ANNs with two hidden layers can ap-
proximate any (even discontinuous) function to an
arbitrary precision, theoretical results on, e.g., the rate
of convergence are lacking. For other (non)parametric
classi1ers, the relation between the size of the train-
ing set and the expected error rate has been stud-
ied theoretically. One obstacle in developing a more
profound statistical foundation for trained ANNs is
that convergence to the global minimum of the risk
function (squared error) cannot be guaranteed. Fur-
thermore, there is always a danger of overtraining
an ANN as minimising the error measure on a train-
ing set does not imply 1nding a well-generalising
ANN. Nevertheless, the large body of work on ap-
plication of ANNs presented in the last decade pro-
vides (novice) users with many rules of thumb on
how to set the various parameters. Also, methods
such as regularisation, early stopping and ensemble
training=bagging can help in avoiding the problem of
overtraining.
Another problem is how to choose the best ANN ar-

chitecture. Although there is some work on model selec-
tion [250], no general guidelines exist that guarantee the
best trade-oI between bias and variance of the classi1er
for a particular size of the training set. Training uncon-
strained networks using standard performance measures
such as the mean squared error might even give very
unsatisfying results. This, we assume, is the reason why
in a number of applications, networks were not adap-
tive at all (e.g., CNNs) or heavily constrained by their
architecture (e.g., the Neocognitron and shared weight
networks). Note that this does not automatically imply
that unconstrained ANNs should not be applied to image
processing. It does indicate that as much prior knowl-
edge as possible should be used in both ANN design and
training.
ANNs suIer from what is known as the black-box

problem: given any input a corresponding output is pro-
duced, but it cannot be elucidated why this decision was
reached, how reliable it is, etc. In image understanding,
this is certainly problematic, so the use of ANNs in
such applications will remain limited. Some fuzzy neu-
ral architectures facilitate extraction of fuzzy rules after
training. We expect that fuzzy ANNs will be more ap-
plicable in image understanding. In some applications,
e.g., process monitoring, electronic surveillance, bio-
metrics, etc., a con1dence measure is highly necessary
to prevent costly false alarms. In such areas, it might
even be preferable to use other, less well-performing
methods that do give statistically profound con1dence
intervals.

6. Conclusion and future perspectives

We have structured our survey according to the six
steps in the image processing chain. ANNs have been
trained to perform these six tasks with various degrees
of success:

• Image preprocessing is a popular application area.
Several (regression) ANNs were developed for im-
age reconstruction, image restoration and image en-
hancement. Often, these networks were not (or only
partially) adaptive. A general conclusion is that neu-
ral solutions are truly interesting when existing algo-
rithms fail or when ANNs may reduce the amount of
computation considerably. The largest risk in prepro-
cessing is that training results in ANNs being tuned
to speci1c image material.

• Image compression is an interesting application of
ANNs. A caveat again is tuning to particular images.
As there is no unique way of evaluating compres-
sion algorithms, approaches should be compared with
competing compression algorithms on novel test im-
ages. Feature extraction is a useful application of, es-
pecially, the SOM. Also, the possibility of non-linear
feature extraction by feed-forward ANNs with several
hidden layers oIers additional functionality.

• Image segmentation and object detection have largely
been performed by pixel-based or feature-based (low
level) approaches. Pixel-based approaches provide the
classi1er with all relevant information, but usually re-
sult in high-dimensional input spaces. A feature-based
approach, however, essentially compresses the infor-
mation obtained from a local neighbourhood into a
vector of salient features. On the one hand, it can-
not be guaranteed that the chosen features comprise
most of the discriminative information. On the other
hand, a feature-based approach may be the only way
to guarantee rotation and scale invariance. A possi-
ble remedy is to develop novel pixel-based classi1ca-
tion approaches in which neighbouring pixels are no
longer regarded as completely separate variables. For
object recognition, problems like object occlusion and
multiple occurrences of objects remain unresolved.

• Image understanding is a dubious application of ANNs
because of their black-box character and the need for
a large number of images as training and test sets. As
long as there is no accepted facility for explaining why
a particular class label has been assigned to a pattern,
black-box classi1ers will not be widely applied in im-
age understanding. Neural-fuzzy architectures [251]
and probabilistic networks [218] may lend themselves
better for image understanding because of their trans-
parent character and the possibility of initialisation by
a priori rules or distributions.

• Optimisation problems have in most cases been
approached by solutions based on Hop1eld ANNs.
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Table 2
The diIerent types of neural networks applied to the various tasks in the image processing chaina
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Neural network type

Feed-forward, • • • • • • •
regression

Feed-forward, • • •
auto-association

Feed-forward, • • • • • •
classi1cation

Feed-forward, •
shared weights

Feed-forward, • •
recursive

Perceptron • •
Radial basis function • • •

network (RBF)
Self-organising feature • • • • • • •

map (SOM)
(Fuzzy) Learning vector • •

quantization (LVQ)
Hop1eld • • • • • • • • •
Cellular (CNN) • • •
Generalized adaptive •

neural 1lters (GANF)
Adaptive resonance • •

theory (ART)
Associative memories • • • •

(and RAM)
ADALINE •
Neocognitron •

Probabilistic •
Neural decision tree •
Neural belief network •
Higher order network •
Counterpropagation •

network
Fuzzy neural= • • • • •
Neuro-fuzzy system
Other • • • • • • • • •

aThe numbers in the top row refer to the sections where the image processing task is being reviewed.

Nevertheless, several issues remain problematic such
as casting the problem at hand to the Hop1eld ar-
chitecture and bypassing the high dependency of the
initial con1guration. Hop1eld networks become an

interesting alternative to conventional optimisation
techniques when the latter fail in solving the problem,
either because of its non-linear character or because of
the computational complexity.
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An overview of ANN architectures used for diIerent
image processing tasks is given in Table 2. It shows that
feed-forward ANNs, SOMs and Hop1eld ANNs are the
most frequently applied architectures, although many,
more exotic designs have been applied to image process-
ing problems as well.

6.1. Outlook

This article has to a large extent been an overview
of what can now perhaps be called the “neural network
hype” in image processing: the approximately 15-year
period following the exciting publications of Kohonen
[252], Hop1eld [253] and Rumelhart et al. [4]. Their
work led many researchers to develop and apply various
methods, which were originally inspired by the structure
of the human brain. In some cases, the emphasis was on
biological plausibility. Other applications focused on the
possibility of parallel implementation. In most applica-
tions, however, the adaptive capabilities of feed-forward
ANNs were used to build a classi1er.
We believe that the last few years have seen a change

in attitude towards ANNs, so that now ANNs are not
anymore automatically seen as the best solution to any
classi1cation or regression problem. The 1eld of ANNs
has to a large extent been reincorporated in the various
disciplines that inspired it: pattern recognition, psychol-
ogy and neurophysiology. ANNs are interesting as tools
when there is a real need for an adaptive approach or a
fast, parallel solution, but one should remain open to new
interesting developments, such as the recently proposed
support vector machines [254].
So what are the challenges left for ANNs in image

processing? As we have discussed before, the main prob-
lems in many image processing applications still are the
abundance of features and the diOculty of coping with
concomitant variations in position, orientation and scale.
This clearly indicates the need for more intelligent, in-
variant feature extraction and feature selection mecha-
nisms. Prior knowledge, e.g., about the aforementioned
invariances or the expected image content, should play a
large role in this, but could also be incorporated into the
network architecture itself.
A true challenge is to use ANNs as building blocks in

large, adaptive systems consisting of collaborating mod-
ules. Such an adaptive system should be able to control
each module and propagate feedback from the highest
level (e.g., object detection) to the lowest level (e.g., pre-
processing). Another interesting possibility for ANNs is
what might be called on-the-job training, which makes
possible the use of ANNs in changing environments. In
many application areas, this would be a valuable im-
provement over current systems and facilitate transfer-
ability between diIerent sites.
The conclusion must be that ANNs can play a role in

image processing, although it might be a role as a sup-

porting tool rather than a major one. ANNs are useful
in image processing as either non-parametric classi1ers,
non-linear regression functions, or for (un)supervised
feature extraction. If, or when, the problems of ANN ap-
plication outlined in this paper are gradually solved, this
role may become increasingly larger.
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